kleinblog

ベルヌーイ分布とは

定義 1である確率を$p$とすると、0である確率は$1 - p$となる 上記の通りベルヌーイ分布は2値分類にて使用される。 例えば、「成功 or 失敗」「勝ち or 負け」「Aである or Aでない」などなど。 公式 …

ベイズの定理についてのまとめ

ベイズの定理は条件確率の応用で、通常の確率では「ある条件下Xの元(原因)で事象Yが起こる確率(結果)」を求めるが、 本定理を使うことで …

最尤推定についてのまとめ

最尤推定について自分用にまとめます。 (完全に個人用なので、ミスがあったらすみません) はじめに Youtubeでめちゃくちゃ分かりやすい動画あったのでその紹介。 チャンネル 動画 …

特異値分解問題を解く

行列の特異値分解問題の解き方を整理する。 始める前に今回学習に当たって、最強に分かりやすいYoutubeの動画があったので感謝の意を込めて、リンクを記載し …

行列の固有値分解

個人的学習用のため、ミスがあったらすみません。 固有値分解とは 固有値を持つ正則行列$A$に対して、対角化をするこ …

numpyで逆行列を求めたい

Pythonで逆行列を求めたい時にnumpyでさくっとできるようメモ 関数定義 ndarrayを引数にとり、その逆行列を返却する関数を定義します import numpy as np def to_inv(matrix: np.ndarray) ->...

CodeBuildのbuildspecでartifactsのサブディレクトリを捨てる

AWSのCodeBuildでartifactsをS3に保存する際のPathの指定で詰まったのでメモ 仕様 そもそもartifacts生成において以下のような仕様があります ファイル指定 hoge.txt artifacts: files: - hoge.txt...

機械学習のための固有値と固有ベクトル(復習)

定義 一般に固有値と固有ベクトルは以下の通り定義される。 $$ AX = \lambda X $$ Aは正則行列 Xは0行列以外 上記条件を満たす時、$\lambda$ を固有値、Xを固有ベクトルという わかるこ …

機械学習のための微分(復習)

機械学習において微分が超重要ということで、主要な微分関連をまとめます。 教材として、キカガクの脱ブラックボッ …

エントロピー、交差エントロピー、KLダイバージェンス

エントロピー エントロピーとは一般に、無秩序さを表す指標として考えられる。 これは言い換えると、予測できなさと …


Page 2 / 8